Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N. Rahahlia, ${ }^{\text {a }}$ K. Alioune, ${ }^{\text {a }}$ A. Guehria-Laidoudi, ${ }^{\text {a }}$ S. Dahaoui ${ }^{\text {b }}$ and C. Lecomte ${ }^{b}$

${ }^{\text {a }}$ Laboratoire de CristallographieThermodynamique, Faculté de Chimie USTHB PB 32 EI-Alia, Babezzouar 16111 Alger, Algeria, and ${ }^{\text {b }}$ Laboratoire de Cristallographie et Modélisation des Matériaux, Minéraux et biologiques (LCM3B), CNRS UMR 7036 Faculté des Sciences BP 239, 54506 Vandoeuvre-lésNancy Cedex, France

Correspondence e-mail:
guehria_laidoudi@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.065$
Data-to-parameter ratio $=27.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[tetraaquadi- μ_{4}-succinato- μ_{5}-succinatodiytterbium(III)] hexahydrate]

The title compound, $\left\{\left[\mathrm{Yb}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is a twodimensional open-framework built up from centrosymmetric binuclear units developed along [100] through the spacers of four extended ligands, and interconnected along [101] by two twisted ligands, forming a layered coordination polymer in the (010) plane embedding six uncoordinated water molecules. The water-coordinated $\mathrm{Yb}^{\mathrm{III}}$ atom completes a nine-coordination mode via seven O atoms from four carboxylate ligands, in a monocapped square antiprism. One independent succinate ligand, located on an inversion center, is in a bidentate coordination mode, exhibiting an anti conformation. The second independent succinate ligand, in a gauche conformation, is bidentate and bridging-chelating, involving one triply ligating O atom displaying the longest $\mathrm{Yb}-\mathrm{O}$ bond [2.598 (2) \AA]. In addition to interlayer hydrogen bonds, intralayer hydrogen bonds involve, as acceptors, carboxylate O atoms which are in bidentate mode.

Comment

α, ω-Dicarboxylic acids give flexible ambidentate and templating ligands leading to coordination polymers having a wide breadth of applications (Kitagawa et al., 2004; Rao et al., 2004). With lanthanide cations, known for their oxygen affinity and their great range of coordination numbers and modes, the resulting self-assembly networks have enhanced the field of supramolecular chemistry from both a theoretical and practical point of view (Bradshaw et al., 2005; Mellot-Drazniels et al., 2002). In an attempt to understand the significance of specific interactions in hybrid materials based on rare-earth elements (Benmerad, 2000; Rahahlia, 2003), we have synthesized, under hydrothermal conditions, and determined the first crystal structure of an ytterbium succinate.

The title compound, (I), is isostructural with the erbium analog (Sun et al., 2004), but its chemical formula is different from the ytterbium succinate obtained in powder form (Sevost'yanov \& Dvornikova, 1972). Except for Pm and Tm, but in addition to Y and Sc , the single-crystal structures of all other rare-earth succinates have been obtained, reflecting the increased activity in the field of metal-organic frameworks involving lanthanides (Cui et al., 2005; Fleck, 2002; He et al., 2006; Nika et al., 2005; Perles et al., 2004; Seguatni et al., 2004; Serpaggi et al., 1999; Wang et al., 2006; Yu et al., 2006; Zhou et al., 2005).

The asymmetric unit of (I) contains one $\mathrm{Yb}^{\mathrm{III}}$ atom, one and a half succinate anions, two coordinated and three uncoordinated water molecules. If the longer $\mathrm{Yb}-\mathrm{O} 5^{\mathrm{ii}}$ [symmetry code: (i) $1+x, y, z]$ distance of 2.589 (2) \AA is considered to be a bond, then two $\mathrm{Yb}^{\mathrm{III}}$ atoms are linked through two $\mu_{1,1^{-}}$and two $\mu_{1,3}$-oxo-bridges, forming the basic centrosymmetric

Received 24 August 2006
Accepted 5 September 2006
binuclear unit, with a Yb $\cdots \mathrm{Yb}$ distance of 4.081 (2) \AA (Fig. 1). Hence, the $\mathrm{Yb}^{\text {III }}$ atom is nine-coordinated by seven O atoms from succinate ligands and two O atoms from aqua ligands. The coordination polyhedron is a slightly distorted monocapped square antiprism, with atom O 1 in the capping position. An extended succinate ligand, located on an inversion center, is tetradentate, in an anti conformation, with a $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 1^{\mathrm{i}}$ torsion angle [symmetry code: (i) $-x, 1-y$, $2-z]$ of 180° and connects two symmetry-related $\mathrm{Yb}^{\mathrm{III}}$ atoms. A twisted succinate ligand is pentadentate, in a syn conformation with a $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ torsion angle of -61.5 (3) ${ }^{\circ}$, connecting three $\mathrm{Yb}^{\text {III }}$ atoms. The $\mathrm{Yb}-\mathrm{O}_{\text {carboxylate }}$ bond lengths (Table 1) are consistent with expected values (Wu et al., 2003), while the longer $\mathrm{Yb}-\mathrm{O} 5^{\mathrm{ii}}$ distance involves the triply ligating O atom of the bridging-chelating ligand. Within the carboxylate ligands, all geometric parameters have normal bond distances (Zheng \& Sun, 2003).

The connection of the one-edge-sharing bi-antiprisms in the [100] and [101] directions, through the ligands as spacers, and via interlayer hydrogen bonds, leads to the formation of channels surrounded by methylene groups and hydrogenbonded water molecules (Fig. 2). Interlayer hydrogen bonds are observed, involving uncoordinated water molecules (O3W, O4W and O5W) as acceptors. There are strong interactions between two H atoms bonded to $\mathrm{O} 4 W$ and $\mathrm{O} 3 W$ respectively. Moreover, these uncoordinated water molecules, as well as the aqua ligands ($\mathrm{O} 1 W$ and $\mathrm{O} 2 W$), act as donors in strong interlayer and intralayer bonds respectively (Table 2). This study confirms that coordination polymers comprising the infinite typical metal-O-metal subfeature distinguishing rare earth and alkaline earth dicarboxylates cannot exist when an

Figure 1
Part of the crystal structure of (I), showing the labeling scheme and 50% probability displacement ellipsoids. [Symmetry code: (i) $1+x, y, z$.]

Figure 2
Packing diagram of (I), viewed along the a axis.
extended network is constructed from binuclear entities, or a cage assembly.

Experimental

$\mathrm{Yb}_{2} \mathrm{O}_{3}$ ($0.394 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved upon heating in 5 ml concentrated HCl . The resulting residue, added to succinic acid $(0.236 \mathrm{~g}, 2 \mathrm{mmol})$ in 15 ml deionized water, was introduced into a 23 ml Teflon-lined stainless steel vessel. The vessel was sealed, heated to 433 K for 3 d and then cooled to room temperature; colorless crystals were separated by filtration.

Crystal data

$\left[\mathrm{Yb}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=437.23$
Triclinic, $P \overline{1}$
$a=6.457(5) \AA$
$b=9.741(5) \AA$
$c=10.384(5) \AA$
$\alpha=79.959(5)^{\circ}$
$\beta=89.571(5)^{\circ}$
$\gamma=71.133(5)^{\circ}$
$\left[\mathrm{Yb}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=437.23$
Triclinic, $P 1$
$a=6.457$ (5) A
$b=9.741$ (5) A
$\alpha=79.959$
$\beta=89.571(5)^{\circ}$
$\gamma=71.133(5)^{\circ}$

$$
\begin{aligned}
& V=607.7(6) \AA^{3} \\
& Z=2 \\
& D_{x}=2.389 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=7.75 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.46 \times 0.17 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: numerical (ABSORB; DeTitta, 1988)

$$
T_{\min }=0.184, T_{\max }=0.690
$$

29166 measured reflections 5330 independent reflections 5008 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.059$
$\theta_{\text {max }}=35.0^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /[
\end{aligned} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0401 P)^{2} \\
& \\
& \quad+1.5702 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=2.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-3.31 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0182(9)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-Yb1	$2.375(2)$	$\mathrm{O} 1 W-\mathrm{Yb} 1$	$2.322(3)$
O2-Yb1	$2.435(2)$	$\mathrm{O} 2 W-\mathrm{Yb} 1$	$2.283(2)$
O3-Yb1	$2.479(2)$	$\mathrm{Yb} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.300(2)$
O4-Yb1	$2.350(2)$	$\mathrm{Yb} 1-\mathrm{O}^{\mathrm{ii}}$	$2.372(2)$
C3-C4-C5-C6	$-61.5(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Yb} 1-\mathrm{O} 2$	$179.6(3)$
O3-C3-Yb1-O5 ${ }^{\mathrm{i}}$	$-174.58(14)$		
Symmetry codes: $(\mathrm{i})-x,-y+1,-z+2 ;$ (ii) $x+1, y, z$.			

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O} 2^{\text {ii }}$	0.79	1.997	2.768 (4)	165
$\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {iii }}$	0.80	1.861	2.654 (3)	170
$\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 3 W$	0.81	1.915	2.722 (4)	172
$\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 4 W$	0.82	1.857	2.671 (4)	171
$\mathrm{O} 3 W-\mathrm{H} 31 \cdots \mathrm{O} 4 W^{\text {iv }}$	0.95	1.883	2.801 (3)	161
$\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O} 3^{\text {ii }}$	0.94	2.171	3.017 (4)	149
$\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O} 2{ }^{\text {ii }}$	0.94	2.341	3.035 (4)	130
$\mathrm{O} 4 W-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {v }}$	0.91	1.846	2.735 (3)	164
$\mathrm{O} 4 W-\mathrm{H} 41 \cdots \mathrm{O} 5 W$	0.83	1.914	2.723 (4)	163
$\mathrm{O} 5 W-\mathrm{H} 51 \cdots \mathrm{O} 3^{\text {vi }}$	0.80	2.191	2.952 (4)	157
O5W-H52 . ${ }^{\text {O }} 3 W^{\text {vii }}$	0.76	2.121	2.880 (4)	176
$\begin{aligned} & \text { Symmetry codes: } \\ & -x+1,-y+2,-z+1 \\ & x-1, y, z \end{aligned}$	$\begin{array}{ccc} x+1, y, z ; & \text { (iii) } & -x+1,-y+1,-z+2 ; \\ -x+1,-y+1,-z+1 ; & \text { (vi) }-x,-y+2,-z+1 ; & \text { (ivi) } \end{array}$			

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. Methylene H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak in the final difference Fourier map is located $0.73 \AA$ from H 42 and the deepest hole $0.73 \AA$ from atom Yb 1 .

Data collection: KappaCCD Software (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank E. Wenger, Service Commun de Diffractométrie, Université Henri Poincaré, Nancy I, France, for the X-ray data collection. We are grateful for financial support from project CMEP-programme TASSILI (O5 MDU-France, MESRS, Algeria).

References

Benmerad, B. (2000). MSc dissertation, Algiers University, Algeria.
Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. \& Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.

Cui, G. H., Li, J. R., Zhang, R. H. \& Bu, X. H. (2005). J. Mol. Struct. 740, 187191.

DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fleck, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 569-570.
He, Q., Zi, J. F. \& Zhang, F. J. (2006). Acta Cryst. E62, m1266-m1267.
Kitagawa, S., Kitura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Mellot-Drazniels, C., Girard, S., Ferey, G., Schon, J. C., Carcarevic, Z. \& Jansen, M. (2002). Chem. Eur. J. 8, 4103-4113.
Nika, W., Pantenburg, I. \& Meyer, G. (2005). Acta Cryst. E61, m138-m140.
Nonius, (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Perles, J., Iglesias, M., Ruiz-Valero, C. \& Snejko, N. (2004). J. Mater. Chem. 14, 2683-2689.
Rahahlia, N. (2003). MSc dissertation, Annaba University, Algeria.
Rao, C. N. R., Natarajan, S. \& Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.
Seguatni, A., Fakhfakh, M., Vauley, M. J. \& Jouini, N. (2004). J. Solid State Chem. 177, 3402-3410.
Serpaggi, F., Luxbacher, T., Cheetham, A. K. \& Ferey, G. (1999). J. Solid State Chem. 145, 580-586.
Sevost'yanov, V. P. \& Dvornikova, L. M. (1972). Russ. J. Inorg. Chem. 17, 1514-1516.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, J., Zheng, Y. Q. \& Li, J. L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 99-100.
Wang, C.-X., Li, Y., Zhang, Q.-H., Cai, D.-J. \& Xie, X.-B. (2006). Acta Cryst. E62, m545-m547.
Wu, C. D., Lu, C. Z., Lu, S. F., Zhuang, H. H. \& Huang, J. S. (2003). Dalton Trans. pp. 3193-3198.
Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. \& Shen, D.-Z. (2006). Acta Cryst. E62, m1620-m1622.
Zheng, Y. Q. \& Sun, J. (2003). J. Solid State Chem. 172, 288-295.
Zhou, Y. F., Jiang, F. L., Yuang, D. Q., Wu, B. L. \& Hong, M. C. (2005). J. Mol. Struct. 743, 21-27.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

